Tuesday 7 February 2017

Ar (1) Gleitender Durchschnitt

Moving Averages: Was sind sie Unter den beliebtesten technischen Indikatoren werden gleitende Mittelwerte verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art von gleitendem Durchschnitt (gemeinhin in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Sobald es bestimmt ist, wird der daraus resultierende Mittelwert dann auf eine Tabelle aufgetragen, um es den Händlern zu ermöglichen, auf geglättete Daten zu schauen, anstatt sich auf die täglichen Preisschwankungen zu konzentrieren, die in allen Finanzmärkten inhärent sind. Die einfachste Form eines gleitenden Durchschnitts, der als einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem das arithmetische Mittel eines gegebenen Satzes von Werten genommen wird. Um beispielsweise einen gleitenden 10-Tage-Durchschnitt zu berechnen, würden Sie die Schlusskurse der letzten 10 Tage addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl von Tagen (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Trader einen 50-Tage-Durchschnitt sehen möchte, würde die gleiche Art der Berechnung gemacht, aber er würde auch die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu geben, wie ein Vermögenswert im Verhältnis zu den vergangenen 10 Tagen bewertet wird. Vielleicht fragen Sie sich, warum technische Händler nennen dieses Tool einen gleitenden Durchschnitt und nicht nur ein normaler Durchschnitt. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Satz fallen gelassen werden müssen und neue Datenpunkte hereinkommen müssen, um sie zu ersetzen. Somit bewegt sich der Datensatz ständig auf neue Daten, sobald er verfügbar ist. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. Wenn in Fig. 2 der neue Wert von 5 zu dem Satz hinzugefügt wird, bewegt sich das rote Feld (das die letzten 10 Datenpunkte darstellt) nach rechts und der letzte Wert von 15 wird aus der Berechnung entfernt. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt des Datensatzabbaus zu sehen, was er tut, in diesem Fall von 11 bis 10. Wie sehen sich die gleitenden Mittelwerte aus? MA berechnet worden sind, werden sie auf ein Diagramm aufgetragen und dann verbunden, um eine gleitende mittlere Linie zu erzeugen. Diese Kurvenlinien sind auf den Diagrammen der technischen Händler üblich, aber wie sie verwendet werden, können drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu irgendeinem Diagramm hinzuzufügen, indem man die Anzahl der Zeitperioden, die in der Berechnung verwendet werden, anpasst. Diese kurvenreichen Linien scheinen vielleicht ablenkend oder verwirrend auf den ersten, aber youll wachsen Sie daran gewöhnt, wie die Zeit vergeht. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, stellen Sie auch eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von der zuvor genannten einfachen gleitenden Durchschnitt unterscheidet. Die einfache gleitende Durchschnitt ist sehr beliebt bei den Händlern, aber wie alle technischen Indikatoren, hat es seine Kritiker. Viele Personen argumentieren, dass die Nützlichkeit der SMA begrenzt ist, da jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die neuesten Daten bedeutender sind als die älteren Daten und sollten einen größeren Einfluss auf das Endergebnis haben. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seitdem zur Erfindung verschiedener Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Informationen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller gleitender Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art von gleitendem Durchschnitt, die den jüngsten Preisen mehr Gewicht verleiht, um sie reaktionsfähiger zu machen Zu neuen Informationen. Das Erlernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Kartierungspakete die Berechnungen für Sie durchführen. Jedoch für Sie Mathegeeks heraus dort, ist hier die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als das vorhergehende EMA benutzt werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die praktische Beispiele enthält, wie Sie sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnen können. Der Unterschied zwischen der EMA und SMA Nun, da Sie ein besseres Verständnis haben, wie die SMA und die EMA berechnet werden, können wir einen Blick auf, wie diese Mittelwerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gelegt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 sind die Anzahl der Zeitperioden, die in jedem Durchschnitt verwendet werden, identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu verwenden. Was sind die verschiedenen Tage Durchschnittliche Mittelwerte sind eine völlig anpassbare Indikator, was bedeutet, dass der Benutzer frei wählen können, was Zeitrahmen sie bei der Schaffung der durchschnittlichen wollen. Die häufigsten Zeitabschnitte, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne, die verwendet wird, um den Durchschnitt zu erzeugen, desto empfindlicher wird es für Preisänderungen sein. Je länger die Zeitspanne, desto weniger empfindlich, oder mehr geglättet, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen für die Einrichtung Ihrer gleitenden Durchschnitte. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist es, mit einer Reihe von verschiedenen Zeitperioden zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages: So verwenden Sie ThemAutoregressive gleitende durchschnittliche Fehlerprozesse (ARMA-Fehler) und andere Modelle, die Lags von Fehlertermen enthalten, können mit Hilfe von FIT-Anweisungen geschätzt und mit SOLVE-Anweisungen simuliert oder prognostiziert werden. ARMA-Modelle für den Fehlerprozess werden oft für Modelle mit autokorrelierten Residuen verwendet. Mit dem AR-Makro können Modelle mit autoregressiven Fehlerprozessen spezifiziert werden. Mit dem MA-Makro können Modelle mit gleitenden Durchschnittsfehlern angegeben werden. Autoregressive Fehler Ein Modell mit autoregressiven Fehler erster Ordnung, AR (1), hat die Form, während ein AR (2) Fehlerprozess die Form hat und so weiter für Prozesse höherer Ordnung. Beachten Sie, dass die s unabhängig und identisch verteilt sind und einen Erwartungswert von 0 haben. Ein Beispiel für ein Modell mit einer AR (2) - Komponente ist usw. für Prozesse höherer Ordnung. Zum Beispiel können Sie ein einfaches lineares Regressionsmodell mit MA (2) gleitenden Durchschnittsfehlern schreiben, da MA1 und MA2 die gleitenden Durchschnittsparameter sind. Beachten Sie, dass RESID. Y automatisch durch PROC MODEL definiert wird. Die ZLAG-Funktion muss für MA-Modelle verwendet werden, um die Rekursion der Verzögerungen zu verkürzen. Dadurch wird sichergestellt, dass die verzögerten Fehler in der Lag-Priming-Phase bei Null beginnen und keine fehlenden Werte propagieren, wenn Verzögerungsperiodenvariablen fehlen, und stellt sicher, dass die zukünftigen Fehler null sind, anstatt während Simulation oder Prognose fehlen. Einzelheiten zu den Verzögerungsfunktionen finden Sie im Abschnitt Lag Logic. Dieses mit dem MA-Makro geschriebene Modell lautet wie folgt: Allgemeine Form für ARMA-Modelle Das allgemeine ARMA-Verfahren (p, q) hat die folgende Form Ein ARMA-Modell (p, q) kann wie folgt angegeben werden: wobei AR i und MA j repräsentieren Die autoregressiven und gleitenden Durchschnittsparameter für die verschiedenen Verzögerungen. Sie können beliebige Namen für diese Variablen verwenden, und es gibt viele äquivalente Möglichkeiten, die die Spezifikation geschrieben werden könnte. Vektor-ARMA-Prozesse können auch mit PROC MODEL geschätzt werden. Beispielsweise kann ein zweidimensionaler AR (1) - Prozess für die Fehler der beiden endogenen Variablen Y1 und Y2 wie folgt spezifiziert werden: Konvergenzprobleme mit ARMA-Modellen ARMA-Modelle können schwer abzuschätzen sein. Wenn die Parameterschätzwerte nicht innerhalb des geeigneten Bereichs liegen, wachsen exponentiell gleitende Modellrestriktionen. Die berechneten Residuen für spätere Beobachtungen können sehr groß sein oder überlaufen. Dies kann entweder geschehen, weil falsche Startwerte verwendet wurden oder weil sich die Iterationen von vernünftigen Werten entfernt haben. Bei der Auswahl der Anfangswerte für ARMA-Parameter sollte Sorgfalt angewendet werden. Startwerte von 0,001 für ARMA-Parameter arbeiten normalerweise, wenn das Modell die Daten gut passt und das Problem gut konditioniert ist. Man beachte, dass ein MA-Modell oft durch ein höherwertiges AR-Modell angenähert werden kann und umgekehrt. Dies kann zu einer hohen Kollinearität bei gemischten ARMA-Modellen führen, was wiederum zu ernsthaften Konditionierungen in den Berechnungen und der Instabilität der Parameterschätzungen führen kann. Wenn Sie Konvergenzprobleme haben, während Sie ein Modell mit ARMA-Fehlerprozessen schätzen, versuchen Sie in Schritten abzuschätzen. Verwenden Sie zuerst eine FIT-Anweisung, um nur die strukturellen Parameter mit den auf Null gehaltenen ARMA-Parametern zu schätzen (oder zu vernünftigen vorherigen Schätzungen, falls verfügbar). Als nächstes verwenden Sie eine andere FIT-Anweisung, um die ARMA-Parameter nur unter Verwendung der strukturellen Parameterwerte aus dem ersten Lauf zu schätzen. Da die Werte der Strukturparameter wahrscheinlich nahe an ihren endgültigen Schätzwerten liegen, können die ARMA-Parameterschätzungen nun konvergieren. Verwenden Sie schließlich eine andere FIT-Anweisung, um simultane Schätzungen aller Parameter zu erzeugen. Da die Anfangswerte der Parameter nun sehr nahe an ihren endgültigen gemeinsamen Schätzungen liegen, sollten die Schätzungen schnell zusammenlaufen, wenn das Modell für die Daten geeignet ist. AR Anfangsbedingungen Die Anfangsverzögerungen der Fehlerterme von AR (p) - Modellen können auf unterschiedliche Weise modelliert werden. Die autoregressiven Fehlerstartmethoden von SASETS Verfahren unterstützt sind die folgenden: bedingten kleinsten Quadrate (ARIMA und MODEL Verfahren) bedingungslose kleinsten Quadrate (AUTOREG, ARIMA und MODEL Verfahren) Maximum-Likelihood (AUTOREG, ARIMA und MODEL Verfahren) Yule-Walker (AUTOREG nur Verfahren) Hildreth-Lu, die die ersten p Beobachtungen (MODEL Verfahren nur) löscht siehe Kapitel 8, Die AUTOREG Verfahren, um eine Erklärung und Diskussion über die Vorzüge der verschiedenen AR (p) den Startmethoden. Die CLS-, ULS-, ML - und HL-Initialisierungen können mit PROC MODEL durchgeführt werden. Für AR (1) Fehler können diese Initialisierungen wie in Tabelle 18.2 gezeigt erzeugt werden. Diese Verfahren sind in großen Proben äquivalent. Tabelle 18.2 Initialisierungen durchgeführt durch PROC MODELL: AR (1) ERRORS Die anfänglichen Verzögerungen der Fehlerausdrücke von MA (q) - Modellen können auch unterschiedlich modelliert werden. Die folgenden gleitenden durchschnittlichen Fehlerstartparadigmen werden von den ARIMA - und MODEL-Prozeduren unterstützt: unbedingte kleinste Fehlerquadrate bedingte kleinste Fehlerquadrate Die bedingte Methode der kleinsten Fehlerquadrate zur Schätzung der gleitenden durchschnittlichen Fehlerterme ist nicht optimal, da sie das Startproblem ignoriert. Dies verringert die Effizienz der Schätzungen, obwohl sie unverändert bleiben. Die anfänglichen verzögerten Residuen, die sich vor dem Start der Daten erstrecken, werden als 0 angenommen, ihr unbedingter Erwartungswert. Dies führt zu einer Differenz zwischen diesen Residuen und den verallgemeinerten Resten der kleinsten Quadrate für die gleitende durchschnittliche Kovarianz, die im Gegensatz zum autoregressiven Modell durch den Datensatz fortbesteht. Normalerweise konvergiert diese Differenz schnell auf 0, aber für fast nicht-invertierbare gleitende Durchschnittsprozesse ist die Konvergenz ziemlich langsam. Um dieses Problem zu minimieren, sollten Sie viele Daten haben, und die gleitenden Durchschnittsparameter-Schätzungen sollten gut innerhalb des invertiblen Bereichs liegen. Dieses Problem kann auf Kosten des Schreibens eines komplexeren Programms korrigiert werden. Unbedingte Kleinste-Quadrate-Schätzungen für das MA (1) - Prozeß können durch Spezifizieren des Modells wie folgt erzeugt werden: Gleitende Durchschnittsfehler können schwer abgeschätzt werden. Man sollte erwägen, eine AR (p) - Näherung für den gleitenden Durchschnitt zu verwenden. Ein gleitender Durchschnitt kann in der Regel durch einen autoregressiven Prozess gut approximiert werden, wenn die Daten nicht geglättet oder differenziert sind. Das AR-Makro Das SAS-Makro AR erzeugt Programmieranweisungen für PROC MODEL für autoregressive Modelle. Das AR-Makro ist Teil der SASETS-Software, und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Das autoregressive Verfahren kann auf die strukturellen Gleichungsfehler oder auf die endogenen Reihen selbst angewendet werden. Das AR-Makro kann für folgende Arten von Autoregression verwendet werden: uneingeschränkte Vektorautoregression beschränkte Vektorautoregression Univariate Autoregression Um den Fehlerausdruck einer Gleichung als autoregressiven Prozess zu modellieren, verwenden Sie die folgende Anweisung nach der Gleichung: Angenommen, Y ist eine Linearen Funktion von X1, X2 und einem AR (2) Fehler. Sie würden dieses Modell wie folgt schreiben: Die Aufrufe zu AR müssen nach allen Gleichungen kommen, auf die sich der Prozess bezieht. Der vorhergehende Makroaufruf AR (y, 2) erzeugt die in der LIST-Ausgabe in Abbildung 18.58 gezeigten Anweisungen. Abbildung 18.58 LIST Optionsausgabe für ein AR (2) - Modell Die PRED-Präfixvariablen sind temporäre Programmvariablen, die verwendet werden, so dass die Verzögerungen der Residuen die korrekten Residuen sind und nicht die, die durch diese Gleichung neu definiert werden. Beachten Sie, dass dies den Aussagen entspricht, die explizit im Abschnitt Allgemeine Formulare für ARMA-Modelle beschrieben sind. Sie können die autoregressiven Parameter auch bei ausgewählten Verzögerungen auf Null setzen. Wenn Sie zum Beispiel autoregressive Parameter in den Lags 1, 12 und 13 wünschen, können Sie die folgenden Anweisungen verwenden: Diese Anweisungen erzeugen die in Abbildung 18.59 dargestellte Ausgabe. Abbildung 18.59 LIST-Option Ausgang für ein AR-Modell mit Lags bei 1, 12 und 13 Die MODEL-Prozedurauflistung der kompilierten Programmcode-Anweisung als Parsed PRED. yab x1 c x2 RESID. y PRED. y - ACTUAL. y ERROR. y PRED. Y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y Es gibt Variationen der Methode der bedingten Kleinste-Quadrate, je nachdem, ob Beobachtungen am Anfang der Serie zum Aufwärmen des AR-Prozesses verwendet werden. Die AR-bedingte Methode der kleinsten Quadrate verwendet standardmäßig alle Beobachtungen und nimmt Nullen für die Anfangsverzögerungen autoregressiver Terme an. Wenn Sie die M-Option verwenden, können Sie anfordern, dass AR die unbedingte Methode der kleinsten Fehlerquadrate (ULS) oder Maximum-Likelihood (ML) anwendet. Zum Beispiel, Diskussionen dieser Methoden wird im Abschnitt AR Anfangsbedingungen zur Verfügung gestellt. Unter Verwendung der Option MCLS n können Sie anfordern, dass die ersten n Beobachtungen verwendet werden, um Schätzungen der anfänglichen autoregressiven Verzögerungen zu berechnen. In diesem Fall beginnt die Analyse mit der Beobachtung n 1. Beispielsweise können Sie mit dem AR-Makro ein autoregressives Modell an die endogene Variable anstelle des Fehlerterms über die Option TYPEV anwenden. Wenn Sie beispielsweise die fünf letzten Lags von Y der Gleichung im vorherigen Beispiel hinzufügen möchten, können Sie AR verwenden, um die Parameter und die Lags mit den folgenden Anweisungen zu generieren: Die obigen Anweisungen erzeugen die in Abbildung 18.60 dargestellte Ausgabe. Abbildung 18.60 LIST Option Ausgang für ein AR-Modell von Y Dieses Modell prognostiziert Y als lineare Kombination von X1, X2, einem Intercept und den Werten von Y in den letzten fünf Perioden. Unrestricted Vector Autoregression Um die Fehlerterme eines Gleichungssatzes als vektorautoregressiven Prozess zu modellieren, verwenden Sie die folgende Form des AR-Makros nach den Gleichungen: Der Prozessname-Wert ist ein beliebiger Name, den Sie für AR verwenden, um Namen für den autoregressiven Namen zu verwenden Werden. Mit dem AR-Makro können Sie verschiedene AR-Prozesse für verschiedene Sätze von Gleichungen modellieren, indem Sie für jeden Satz unterschiedliche Prozessnamen verwenden. Der Prozessname stellt sicher, dass die verwendeten Variablennamen eindeutig sind. Verwenden Sie für den Prozess einen kurzen Prozessname-Wert, wenn Parameter-Schätzwerte in einen Ausgabedatensatz geschrieben werden sollen. Das AR-Makro versucht, Parameternamen zu erstellen, die kleiner oder gleich acht Zeichen sind, aber dies ist durch die Länge des Prozessnamens begrenzt. Die als Präfix für die AR-Parameternamen verwendet wird. Der Variablenlistenwert ist die Liste der endogenen Variablen für die Gleichungen. Beispielsweise wird angenommen, dass Fehler für die Gleichungen Y1, Y2 und Y3 durch einen autoregressiven Prozess der zweiten Ordnung erzeugt werden. Sie können die folgenden Aussagen verwenden, die für Y1 und ähnlichen Code für Y2 und Y3 generieren: Für Vektorprozesse kann nur die Methode der bedingten kleinsten Quadrate (MCLS oder MCLS n) verwendet werden. Sie können auch das gleiche Formular mit Einschränkungen verwenden, dass die Koeffizientenmatrix bei ausgewählten Verzögerungen 0 ist. Zum Beispiel verwenden die folgenden Aussagen einen Vektorprozess der dritten Ordnung auf die Gleichungsfehler, wobei alle Koeffizienten bei Verzögerung 2 auf 0 beschränkt sind und die Koeffizienten bei den Verzögerungen 1 und 3 unbeschränkt sind: Sie können die drei Reihen Y1Y3 als vektorautoregressiven Prozess modellieren In den Variablen statt in den Fehlern, indem Sie die Option TYPEV verwenden. Wenn Sie Y1Y3 als Funktion von vergangenen Werten von Y1Y3 und einigen exogenen Variablen oder Konstanten modellieren möchten, können Sie mit AR die Anweisungen für die Lag-Terme erzeugen. Schreiben Sie eine Gleichung für jede Variable für den nichtautoregressiven Teil des Modells und rufen Sie dann AR mit der Option TYPEV auf. Zum Beispiel kann der nichtautoregressive Teil des Modells eine Funktion von exogenen Variablen sein, oder es können Abfangparameter sein. Wenn es keine exogenen Komponenten für das Vektorautoregressionsmodell gibt, die keine Abschnitte enthalten, dann weisen Sie jeder der Variablen Null zu. Es muss eine Zuordnung zu jeder der Variablen vorhanden sein, bevor AR aufgerufen wird. Dieses Beispiel modelliert den Vektor Y (Y1 Y2 Y3) als eine lineare Funktion nur seines Werts in den vorherigen zwei Perioden und einen Weißrauschenfehlervektor. Das Modell hat 18 (3 3 3 3) Parameter. Syntax des AR-Makros Es gibt zwei Fälle der Syntax des AR-Makros. Wenn Einschränkungen für einen Vektor-AR-Prozess nicht benötigt werden, hat die Syntax des AR-Makros die allgemeine Form, die ein Präfix für AR spezifiziert, das beim Konstruieren von Namen von Variablen zum Definieren des AR-Prozesses verwendet werden soll. Wenn der Endolist nicht angegeben wird, ist die endogene Liste standardmäßig der Name. Der der Name der Gleichung sein muss, auf die der AR-Fehlerprozess angewendet werden soll. Der Name darf 32 Zeichen nicht überschreiten. Ist die Reihenfolge des AR-Prozesses. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Wenn mehr als ein Name gegeben wird, wird ein unbeschränkter Vektorprozess mit den strukturellen Residuen aller Gleichungen erzeugt, die als Regressoren in jeder der Gleichungen enthalten sind. Wenn nicht angegeben, verwendet endolist standardmäßig den Namen. Gibt die Liste der Verzögerungen an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Lags müssen kleiner oder gleich nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, wird die Verzögerungsliste standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. Gibt die zu implementierende Schätzmethode an. Gültige Werte von M sind CLS (bedingte Schätzungen der kleinsten Quadrate), ULS (unbedingte Schätzungen der kleinsten Quadrate) und ML (Maximum Likelihood Estimates). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung angegeben wird. Die ULS - und ML-Methoden werden für AR-AR-Modelle von AR nicht unterstützt. Dass das AR-Verfahren auf die endogenen Variablen anstelle der strukturellen Residuen der Gleichungen angewendet werden soll. Eingeschränkte Vektorautoregression Sie können steuern, welche Parameter in den Prozess eingeschlossen werden, wobei die Parameter auf 0 begrenzt werden, die Sie nicht einschließen. Verwenden Sie zuerst AR mit der Option DEFER, um die Variablenliste zu deklarieren und die Dimension des Prozesses zu definieren. Verwenden Sie dann zusätzliche AR-Aufrufe, um Ausdrücke für ausgewählte Gleichungen mit ausgewählten Variablen an ausgewählten Verzögerungen zu generieren. Zum Beispiel sind die erzeugten Fehlergleichungen wie folgt: Dieses Modell besagt, daß die Fehler für Y1 von den Fehlern sowohl von Y1 als auch von Y2 (aber nicht von Y3) bei beiden Verzögerungen 1 und 2 abhängen und daß die Fehler für Y2 und Y3 davon abhängen Die vorherigen Fehler für alle drei Variablen, aber nur bei Verzögerung 1. AR-Makro-Syntax für eingeschränkten Vektor-AR Eine alternative Verwendung von AR ist es, Einschränkungen für einen Vektor-AR-Prozess durch Aufruf von AR mehrmals aufzuerlegen, um verschiedene AR-Terme und Lags für verschiedene festzulegen Gleichungen. Der erste Aufruf hat die allgemeine Form spezifiziert ein Präfix für AR zu verwenden, bei der Konstruktion von Namen von Variablen benötigt, um den Vektor AR-Prozess zu definieren. Gibt die Reihenfolge des AR-Prozesses an. Gibt die Liste der Gleichungen an, auf die der AR-Prozess angewendet werden soll. Gibt an, dass AR den AR-Prozess nicht generieren soll, sondern auf weitere Informationen warten soll, die in späteren AR-Aufrufen für denselben Namenwert angegeben sind. Die nachfolgenden Anrufe haben die allgemeine Form ist die gleiche wie im ersten Aufruf. Spezifiziert die Liste der Gleichungen, auf die die Spezifikationen in diesem AR-Aufruf angewendet werden sollen. Nur Namen, die im endolistischen Wert des ersten Aufrufs für den Namenswert angegeben sind, können in der Liste der Gleichungen in eqlist erscheinen. Spezifiziert die Liste der Gleichungen, deren verzögerte strukturelle Residuen als Regressoren in die Gleichungen in eqlist aufgenommen werden sollen. Nur Namen im Endolisten des ersten Aufrufs für den Namenswert können in varlist erscheinen. Wenn nicht angegeben, wird varlist standardmäßig Endolist. Gibt die Liste der Verzögerungen an, zu denen die AR-Terme hinzugefügt werden sollen. Die Koeffizienten der Terme, die nicht aufgelistet sind, werden auf 0 gesetzt. Alle aufgelisteten Verzögerungen müssen kleiner oder gleich dem Wert von nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, verwendet laglist standardmäßig alle Verzögerungen 1 bis nlag. Der MA-Makro Der SAS-Makro MA generiert Programmieranweisungen für PROC MODEL für gleitende Durchschnittsmodelle. Das Makro MA ist Teil der SASETS-Software, und es sind keine speziellen Optionen erforderlich, um das Makro zu verwenden. Der gleitende Mittelwertfehlerprozeß kann auf die strukturellen Gleichungsfehler angewendet werden. Die Syntax des MA-Makros entspricht dem AR-Makro, außer es gibt kein TYPE-Argument. Wenn Sie die kombinierten MA - und AR-Makros verwenden, muss das Makro MA dem AR-Makro folgen. Die folgenden SASIML Aussagen erzeugen ein ARMA (1, (1 3)) Fehlerprozess und es in dem Datensatz MADAT2 speichern. Die folgenden PROC MODEL-Anweisungen werden verwendet, um die Parameter dieses Modells unter Verwendung der maximalen Wahrscheinlichkeitsfehlerstruktur zu schätzen: Die Schätzungen der durch diesen Durchlauf erzeugten Parameter sind in Abbildung 18.61 dargestellt. Abbildung 18.61 Schätzungen aus einem ARMA-Prozess (1, (1 3)) Es gibt zwei Fälle der Syntax für das MA-Makro. Wenn Beschränkungen für einen Vektor-MA-Prozess nicht erforderlich sind, hat die Syntax des MA-Makros die allgemeine Form, die ein Präfix für MA vorgibt, das beim Konstruieren von Namen von Variablen verwendet wird, die benötigt werden, um den MA-Prozess zu definieren, und ist der Standard-Endolist. Ist die Reihenfolge des MA-Prozesses. Spezifiziert die Gleichungen, auf die das MA-Verfahren angewendet werden soll. Wenn mehr als ein Name angegeben wird, wird die CLS-Schätzung für den Vektorprozess verwendet. Gibt die Verzögerungen an, zu denen die MA-Bedingungen hinzugefügt werden sollen. Alle aufgelisteten Verzögerungen müssen kleiner oder gleich nlag sein. Und es dürfen keine Duplikate vorhanden sein. Wenn nicht angegeben, wird die Verzögerungsliste standardmäßig auf alle Verzögerungen 1 bis nlag gesetzt. Gibt die zu implementierende Schätzmethode an. Gültige Werte von M sind CLS (bedingte Schätzungen der kleinsten Quadrate), ULS (unbedingte Schätzungen der kleinsten Quadrate) und ML (Maximum Likelihood Estimates). MCLS ist die Voreinstellung. Nur MCLS ist erlaubt, wenn mehr als eine Gleichung im Endolisten angegeben ist. MA-Makro-Syntax für eingeschränkte Vektorbewegungsmittel Eine alternative Verwendung von MA ist es, Beschränkungen für einen Vektor-MA-Prozeß durch Aufruf von MA mehrere Male aufzuerlegen, um verschiedene MA-Terme und Verzögerungen für verschiedene Gleichungen anzugeben. Der erste Aufruf hat die allgemeine Form spezifiziert ein Präfix für MA, um beim Erstellen von Namen von Variablen für die Definition der Vektor-MA-Prozess zu verwenden. Spezifiziert die Reihenfolge des MA-Prozesses. Spezifiziert die Liste der Gleichungen, auf die das MA-Verfahren angewendet werden soll. Spezifiziert, daß MA nicht den MA-Prozeß erzeugen soll, sondern auf weitere Informationen, die in späteren MA-Aufrufen für denselben Namenwert spezifiziert werden, wartet. Die nachfolgenden Anrufe haben die allgemeine Form ist die gleiche wie im ersten Aufruf. Spezifiziert die Liste der Gleichungen, auf die die Spezifikationen in diesem MA-Aufruf angewendet werden sollen. Spezifiziert die Liste der Gleichungen, deren verzögerte strukturelle Residuen als Regressoren in die Gleichungen in eqlist aufgenommen werden sollen. (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende Durchschnittsterme enthalten. In Woche 1 erlernten wir einen autoregressiven Term in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Beispielsweise ist ein autoregressiver Term der Verzögerung 1 x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende Durchschnittsterme. Ein gleitender Mittelwert in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Es sei n (0, sigma2w) überschritten, was bedeutet, daß die wt identisch unabhängig voneinander verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das durch MA (1) bezeichnete gleitende Durchschnittsmodell der 1. Ordnung ist (xt mu wt theta1w) Das durch MA (2) bezeichnete gleitende Durchschnittsmodell der zweiten Ordnung ist (xt mu wt theta1w theta2w) Das gleitende Mittelmodell der q-ten Ordnung , Mit MA (q) bezeichnet, ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Begriffen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (nicht quadrierten) Ausdrücke in Formeln für ACFs und Abweichungen umwandelt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Vorzeichen verwendet worden sind, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Vorzeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Proben-ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) - Modell. Für interessierte Studierende, Beweise dieser Eigenschaften sind ein Anhang zu diesem Handout. Beispiel 1 Angenommen, dass ein MA (1) - Modell x t 10 w t .7 w t-1 ist. Wobei (wt überstehendes N (0,1)). Somit ist der Koeffizient 1 0,7. Die theoretische ACF wird durch eine Plot dieser ACF folgt folgt. Die graphische Darstellung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis liefert eine Probe gewöhnlich ein solches klares Muster. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1) war. Für diese Simulation folgt ein Zeitreihen-Diagramm der Probendaten. Wir können nicht viel von dieser Handlung erzählen. Die Proben-ACF für die simulierten Daten folgt. Wir sehen eine Spitze bei Verzögerung 1, gefolgt von im Allgemeinen nicht signifikanten Werten für Verzögerungen nach 1. Es ist zu beachten, dass das Beispiel-ACF nicht mit dem theoretischen Muster des zugrunde liegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sein werden Eine andere Probe hätte eine geringfügig unterschiedliche Probe ACF wie unten gezeigt, hätte aber wahrscheinlich die gleichen breiten Merkmale. Theroretical Eigenschaften einer Zeitreihe mit einem MA (2) Modell für den MA (2) Modell, theoretischen Eigenschaften sind die folgenden: Beachten Sie, dass die einzigen Nicht-Null-Werte in der theoretischen ACF sind für Lags 1 und 2 Autokorrelationen für höhere Lags 0 sind , So zeigt ein Beispiel-ACF mit signifikanten Autokorrelationen bei Lags 1 und 2, aber nicht signifikante Autokorrelationen für höhere Lags ein mögliches MA (2) - Modell. Iid N (0,1). Die Koeffizienten betragen 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, wird der theoretische ACF nur bei den Verzögerungen 1 und 2 Werte ungleich Null aufweisen. Werte der beiden Nicht-Autokorrelationen sind A-Plots des theoretischen ACFs. Wie fast immer der Fall ist, verhalten sich Musterdaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Beispielwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wobei wt iid N (0,1) ist. Die Zeitreihenfolge der Daten folgt. Wie bei dem Zeitreihenplot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Proben-ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei Lags 1 und 2, gefolgt von nicht signifikanten Werten für andere Lags. Beachten Sie, dass aufgrund des Stichprobenfehlers das Muster ACF nicht genau dem theoretischen Muster entsprach. ACF für allgemeine MA (q) - Modelle Eine Eigenschaft von MA (q) - Modellen besteht im Allgemeinen darin, dass Autokorrelationen ungleich Null für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q existieren. Nicht-Eindeutigkeit der Verbindung zwischen Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) - Modell für einen Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0.5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll erhalten (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung als Invertibilität zu befriedigen. Wir beschränken MA (1) - Modelle auf Werte mit einem Absolutwert von weniger als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, während 1 10,5 2 nicht. Invertibilität von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch Konvergenz meinen wir, dass die AR-Koeffizienten auf 0 sinken, wenn wir in der Zeit zurückgehen. Invertibilität ist eine Einschränkung, die in Zeitreihensoftware programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Begriffen abzuschätzen. Sein nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertibilitätsbeschränkung für MA (1) - Modelle finden Sie im Anhang. Fortgeschrittene Theorie Anmerkung. Für ein MA (q) - Modell mit einem angegebenen ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten Werte haben, daß die Gleichung 1- 1 y-. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 haben wir den theoretischen ACF des Modells x t 10 w t aufgetragen. 7w t-1. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die R-Befehle, die verwendet wurden, um den theoretischen ACF aufzuzeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens lags, die im Bereich von 0 bis 10 liegt (H0) fügt dem Diagramm eine horizontale Achse hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Genannt acfma1 (unsere Wahl des Namens). Der Plotbefehl (der dritte Befehl) verläuft gegen die ACF-Werte für die Verzögerungen 1 bis 10. Der ylab-Parameter bezeichnet die y-Achse und der Hauptparameter einen Titel auf dem Plot. Um die Zahlenwerte der ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und Diagramme wurden mit den folgenden Befehlen durchgeführt. (N150, list (mac (0.7))) Simuliert n 150 Werte aus MA (1) xxc10 addiert 10, um Mittelwert 10. Simulationsvorgaben bedeuten 0. Plot (x, typeb, mainSimulated MA (1) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurde der theoretische ACF des Modells xt 10 wt. 5 w t-1 .3 w t-2 aufgetragen. Und dann n 150 Werte aus diesem Modell simuliert und die Abtastzeitreihen und die Abtast-ACF für die simulierten Daten aufgetragen. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 Plot (lags, acfma2, xlimc (1,10), ylabr, typh, main ACF für MA (2) mit theta1 0,5, (X, x) (x, x) (x, x, x, y) (1) Für interessierte Studierende sind hier Beweise für die theoretischen Eigenschaften des MA (1) - Modells. Variante: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1 der vorhergehende Ausdruck 1 w 2. Für irgendeinen h 2 ist der vorhergehende Ausdruck 0 Der Grund dafür ist, dass, durch Definition der Unabhängigkeit der wt. E (w k w j) 0 für beliebige k j. Da w w die Mittelwerte 0, E (w j w j) E (w j 2) w 2 haben. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um den oben angegebenen ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so daß die AR-Koeffizienten gegen 0 konvergieren, wenn wir unendlich zurück in der Zeit bewegen. Gut zeigen Invertibilität für die MA (1) - Modell. Wir setzen dann die Beziehung (2) für wt-1 in Gleichung (1) (3) ein (zt wt theta1 (z-therma1w) wt theta1z - theta2w) Zum Zeitpunkt t-2. Gleichung (2) wird dann in Gleichung (3) die Gleichung (4) für wt-2 ersetzen (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Unendlich), erhalten wir das unendliche Ordnungsmodell (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z vervielfachen (unendlich) in der Größe zunehmen, Zeit. Um dies zu verhindern, benötigen wir 1 lt1. Dies ist die Bedingung für ein invertierbares MA (1) - Modell. Unendlich Ordnung MA Modell In Woche 3, gut sehen, dass ein AR (1) Modell in ein unendliches order MA Modell umgewandelt werden kann: (xt - mu wt phi1w phi21w Punkte phik1 w Punkte sum phij1w) Diese Summation der Vergangenheit weißer Rauschbegriffe ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Anforderung für eine stationäre AR (1) ist, dass 1 lt1. Berechnen Sie die Var (x t) mit der kausalen Darstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Reihen, die (phi1lt1) erfordert, andernfalls divergiert die Reihe. Navigation


No comments:

Post a Comment